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SUMMARY

According to predictive-coding theory, cortical areas
continuously generate and update predictions of
sensory inputs at different hierarchical levels and
emit prediction errors when the predicted and actual
inputs differ. However, predictions and prediction
errors are simultaneous and interdependent pro-
cesses, making it difficult to disentangle their con-
stituent neural network organization. Here, we test
the theory by using high-density electrocorticogra-
phy (ECoG) in monkeys during an auditory ‘‘local-
global’’ paradigm in which the temporal regularities
of the stimuli were controlled at two hierarchical
levels. We decomposed the broadband data and
identified lower- and higher-level prediction-error
signals in early auditory cortex and anterior temporal
cortex, respectively, and a prediction-update signal
sent from prefrontal cortex back to temporal cortex.
The prediction-error and prediction-update signals
were transmitted via g (>40 Hz) and a/b (<30 Hz) os-
cillations, respectively. Our findings provide strong
support for hierarchical predictive coding and outline
how it is dynamically implemented using distinct
cortical areas and frequencies.

INTRODUCTION

The predictive-coding theory states that the brain constantly

learns statistical regularities in the sensory environment and

actively generates predictions that are confronted to incoming

sensory inputs (Friston, 2005; Mumford, 1992; Rao and Ballard,

1999; Srinivasan et al., 1982). This is achieved by a bidirectional

cascade of cortical processes, where higher-level structures

attempt to predict inputs from lower-level ones through top-
down connections, and error signals are sent back through bot-

tom-up connections in order to update the internal models that

lead to those predictions. This hierarchical predictive-coding

framework offers a unified model of perception, action, and

attention (Clark, 2013; Friston, 2010), and even possibly psychi-

atric disorders such as schizophrenia and autism (Quattrocki

and Friston, 2014; Stephan et al., 2009).

The predictive-coding theory has been supported by a wide

range of evidence, which primarily demonstrates the effects of

a top-down prediction on facilitating behavioral and neural re-

sponses in visual perception (Egner et al., 2010; Kok et al.,

2012; Summerfield et al., 2006; Summerfield and Koechlin,

2008), auditory perception (Todorovic et al., 2011), and audiovi-

sual speech perception (Blank and Davis, 2016). However, one

core hypothesis derived from the predictive-coding model has

not yet been directly evaluated: the existence of simultaneous

and interdependent computations of predictions and prediction

errors, carried out by distinct and hierarchically organized

neuronal populations (as proposed by Friston, 2005), and trans-

mitted between hierarchical levels via cortical oscillations of

distinct frequency channels (as proposed by Arnal and Giraud,

2012; Bastos et al., 2012; Wang, 2010). Recent studies have

shown that bottom-up and top-down signaling utilizes different

frequency channels in both visual processing (Bastos et al.,

2015b; Michalareas et al., 2016; van Kerkoerle et al., 2014) and

auditory processing (D€urschmid et al., 2016; Fontolan et al.,

2014; Sedley et al., 2016), but it remains unclear what kind of in-

formation is carried in these frequency channels (in the predictive

coding perspective) and how they influence each other. Here, we

specifically set out to evaluate the hypothesis by identifying

comprehensive dynamics of prediction and prediction-error sig-

nals and examine their interactions across hierarchies and

frequencies.

Empirically, prediction-error signals have been linked to neural

activity evoked by unexpected or novel stimuli, which has been

detected at both the macroscopic level (Alink et al., 2010; Be-

kinschtein et al., 2009; Egner et al., 2010; El Karoui et al., 2014;

Todorovic et al., 2011; Wacongne et al., 2011) and the
Neuron 100, 1–15, December 5, 2018 ª 2018 Elsevier Inc. 1

mailto:zenas.c.chao@gmail.com
https://doi.org/10.1016/j.neuron.2018.10.004


Fixation

Tone

200 ~ 300ms 50ms 150ms > 600ms

x x x x x

x x x x Y

x x x x x

x x x x Y

x x x x Y

x x x x x

×20 (habituation)

×20 (habituation)

×80 (80%)

×20 (20%)

×80 (80%)

×20 (20%)

xxxxx
block

xxxxY
block

xx |xx

xY |xx

xY |xY

xx |xY

B

A
Subject 1

Subject 2

C

ECoG on lateral surface
ECoG on OFC

Local standard
Global standard

Local deviant
Global deviant

Local deviant
Global standard

Local standard
Global deviant

Figure 1. Local-Global Paradigm and Experimental Setup

(A) The local-global paradigm.

(B) Sound sequence and task design.

(C) ECoG electrodes layout.
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microscopic level (Eliades and Wang, 2008; Keller et al., 2012).

To evaluate the hierarchical organization of prediction-error sig-

nals, an auditory paradigm named the ‘‘local-global’’ paradigm

was created (Bekinschtein et al., 2009), which introduces two

types of temporal regularities (tone-to-tone transition probability

versus overall multi-tone sequence) and uses their violations to

probe novelty responses at two distinct levels of the cortical

hierarchy (Figure 1). The paradigm has been used to investigate

hierarchical auditory processing in humans and non-human pri-

mates (El Karoui et al., 2014; Strauss et al., 2015; Uhrig et al.,

2014; Wacongne et al., 2011; Wang et al., 2015); however, the

precise contributions of prediction and prediction-error signals

in the hierarchical novelty responses remain unclear, due to

the challenge of unwinding the underlying network dynamics

that are not only simultaneous and interdependent, but also

spatially dispersed and temporally fine-tuned.

To overcome the challenge, we combined the auditory local-

global paradigm with large-scale neurophysiological recordings

in non-human primates and their automatized analysis by an

objective decomposition method (Chao et al., 2015). We used

an electrocorticography (ECoG) system to acquire high-fidelity

broadband neuronal signals from an entire cortical hemisphere

with balanced spatial, spectral, and temporal resolutions (Chao

et al., 2010, 2015; Fukushima et al., 2015; Yanagawa et al.,

2013). After obtaining this large-scale database of cortical activ-

ity, we used an unbiased data-driven analytical approach to

search for multiple, possibly superimposed, time-frequency

components in large-scale network dynamics (Chao et al.,

2015, 2018), and further tested whether their functional profiles

and their trial-by-trial interactions fit with the predictive-coding

framework.
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Specifically, the predictive-coding framework predicted that

(1) violations of local transition probability would arise early on,

in a bottom-up manner, from early auditory cortex; (2) violations

of the overall sequence would arise later, still in a bottom-up

manner, from higher-order cortices; (3) the latter violations

would require revising the mental representation of the

sequence in the higher-level system, thought to involve the pre-

frontal cortex (PFC) (Bekinschtein et al., 2009; Chennu et al.,

2013; El Karoui et al., 2014; Uhrig et al., 2014; Wacongne

et al., 2011), and sending top-down messages updating the

predictions for the next trial in lower-level sensory areas.

Furthermore, our design offered a novel means of testing the

hypothesis that bottom-up and top-down cortical signaling is

achieved, respectively, by message-passing in g versus a/b fre-

quency bands.

RESULTS

Local-Global Paradigm to Establish Hierarchical
Auditory Regularities
Two macaque monkeys, identified as subjects 1 and 2, were

used in this study. During the task, monkeys listened passively

to a series of short sound sequences based on the local-global

auditory paradigm (Figure 1A). To ensure vigilance, monkeys

were required to fixate during each trial (Figure 1B). Cortical

activity was recorded with a 128-channel ECoG array covering

nearly an entire right cerebral hemisphere (Figure 1C).

On each trial, a series of 5 tones were delivered (Figure 1A).

The first 4 tones were identical, either low pitched (tone A) or

high pitched (tone B), but the fifth tone could be either the

same (AAAAA or BBBBB, jointly denoted by xxxxx) or different
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Figure 2. A Predictive-Coding Model of the Local-Global Paradigm

(A) Proposed neural processes in xxxxx blocks. Two hierarchical neuronal populations are shown: one for processing local standard tone x (population X: X1, X2,

and X3), and the other for processing local deviant tone Y (population Y: Y1, Y2, and Y3). On xxjxx trials (top), the fifth tone x (black arrow) is predicted by P1x

(green arrow), and thus no prediction error should be generated. On xYjxx trials (bottom), PE1x and PE1Y (blue arrows) occur and propagate to the higher level

(PE2x and PE2Y).

(B) Left: Neural processes in xxxxY blocks in Full-global. On xYjxY trials, PE1x and PE1Y appear but are fully predicted by P2x and P2Y. On xxjxY trials, PE2x and

PE2Y appear, sincePE1x and PE1Y expected by P2x and P2Y are mostly omitted. Middle: xxxxY blocks in Partial-global. Compared with Full-global, the reduced

P2x and P2Y induce PE2x and PE2Y on xYjxY trials and reduce PE2x and PE2Y on xxjxY trials. Right: xxxxY blocks in No-global. Without global predictions,

processes on xYjxY and xxjxY trials are identical to those on xYjxx and xxjxx trials, respectively.

(C) Appearance profiles of PE1 (PE1x and PE1Y) and PE2 (PE2x and PE2Y) under different comparisons (Unpredicted Local, Predicted Local, or Global) and

conditions (Full-global,Partial-global, orNo-global). ‘‘*’’ indicates that the prediction-error signal appears in the corresponding comparison, and ‘‘–‘‘ indicates that

the error signal cannot be detected by the corresponding comparison.
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(AAAAB or BBBBA, jointly denoted by xxxxY). Auditory stimuli

were delivered in blocks of 120 trials within which one auditory

sequence was frequent while another was rare. In xxxxx blocks,

20 xxxxx trials were initially delivered to establish the rule; then,

there was a random mixture of 80 xxxxx trials (denoted by xxjxx:
xxxxx trial in xxxxx block) randomly mixed with 20 trials of the

deviant sequence xxxxY (xYjxx: xxxxY trial in xxxxx block).

Conversely, in xxxxY block, 20 trials of xxxxY were initially deliv-

ered, followed by a random mixture of 80 xxxxY trials (xYjxY:
xxxxY trial in xxxxY block) and 20 xxxxx trials (xxjxY: xxxxx trial

in xxxxY block).

This paradigm was designed to contrast two levels of regular-

ity. A local regularity is established within a trial by the repetition

of the first 4 tones, which is either followed or violated by the fifth

tone. A global regularity is established by habituating the subject
to a specific 5-tone sequence, which is either respected or

violated by subsequent sequences. Local and global regularities

are orthogonally varied, yielding four trials types: local and global

standards (xxjxx), local and global deviants (xYjxx), local deviant
but global standard (xYjxY), and local standard but global

deviant (xxjxY).

A Hierarchical Predictive-Coding Model of Local and
Global Novelty
The predictive-coding theory suggests that the brain generates

predictions about the possible incoming sensory events, and

that the difference between the prediction and actual sensory

input, i.e., prediction error, propagates forward throughout

the cortical hierarchy. Figure 2 shows how the predictive-cod-

ing framework may provide qualitative predictions about neural
Neuron 100, 1–15, December 5, 2018 3
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responses in the local-global paradigm. We hypothesize a

model with two hierarchical levels of predictions and prediction

errors interacting in two neuronal populations: one for process-

ing the local standard tone x, and the other for processing the

local deviant tone Y. The lower-level system predicts tones

solely based on their transition probabilities (Meyniel et al.,

2016); the higher-level system uses the learned sequence to

predict error signals from the lower level when local deviants

are expected by the global rule, and thus to reduce or abolish

the propagation of those error signals up to a higher level.

This model predicts that a two-step propagation of error sig-

nals should be observed in xxxxx blocks (Figure 2A). On xxjxx
trials, the fifth tone x should be predicted by the lower-level

prediction (P1x), and thus no prediction error should be gener-

ated. On xYjxx trials, error signals should occur at the lower

level since the expected tone x is omitted (PE1x) and the

observed tone Y is unpredicted (PE1Y). Such unexpected vio-

lations should continue to propagate to the next hierarchical

level (PE2x and PE2Y). On the other hand, the effects of

higher-level predictions should be specifically observed in

xxxxY blocks (Figure 2B). First, on xYjxY trials, a lower-level

prediction error should still occur, since the final tone Y violates

the transition probability established by the previous stream of

xxxx. But because this local violation is now expected by the

higher-level predictions (P2x and P2Y), its propagation to the

higher-level should be completely canceled out if the global

regularity is fully learned (Full-global), or be reduced if the

global regularity is only partially learned (Partial-global). If the

global regularity is completely unlearned (No-global), the local

violation should continue to propagate as on xYjxx trials. Sec-

ond, on xxjxY trials, only a higher-order violation should be

observed, caused by the unexpected absence of an expected

local violation.

The model further predicts that different hierarchical pro-

cesses can be isolated by comparing brain activity evoked by

different stimuli (Figure 2C). By contrasting xYjxx and xxjxx tri-

als, we can isolate novelty responses that arise when both local

and global regularities are violated, i.e., a local novelty

response that is also unpredicted by the global rule (unpre-

dicted local novelty response, or Unpredicted Local). Similarly,

by contrasting xYjxY and xxjxY trials, we can capture the local

novelty response that is predicted by the global rule (predicted

local novelty response, or Predicted Local). Finally, by contrast-

ing rare trials (Rare, includes xYjxx and xxjxY) and frequent trials

(Frequent, includes xxjxx and xYjxY), we can isolate the global

novelty response (global novelty response, or Global). Based

on the model (as in Figures 2A and 2B), lower-level predic-

tion-error signals (PE1, includes PE1x and PE1Y) should appear

in the unpredicted and predicted local novelty responses but

not in the global novelty response, and higher-level predic-

tion-error signals (PE2, includes PE2x and PE2Y) should appear

in all novelty responses (in Full-global), only in the unpredicted

local and global novelty responses (in Partial-global), or only in

the unpredicted and predicted local novelty responses (in No-

global). It is worth noting that the term ‘‘novelty’’ is used here

to describe responses to sequences that violate the rule,

even though the sequences themselves are not novel since

they occur multiple times in a block.
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Three Novelty Response Patterns Revealed by
Univariate Analysis
To test the model predictions, we compared ECoG signals from

different trial conditions to obtain novelty responses from the

three comparisons: unpredicted local novelty response (xYjxx –

xxjxx), predicted local novelty response (xYjxY – xxjxY), and

global novelty response (Rare – Frequent). The spatio-spectro-

temporal dynamics of ECoG signals were quantified by the

time-frequency representation (TFR) obtained from wavelet

transformation. Each TFR represents the in-trial cortical dy-

namics from a channel, during the time from 200 ms before the

first tone to 600 ms after the fifth tone (81 time bins), across

the frequencies between 0 and 125 Hz (125 frequency bins).

An example of the three comparisons of TFRs in channel 78,

located in early auditory cortex (rostral parabelt area), is shown

in Figure 3. A novelty response was defined as a significant

difference in TFRs under the corresponding comparison (con-

toured areas in Figure 3), detected by a nonparametric cluster-

based permutation test (a = 0.05 corrected for multiple com-

parisons, see STAR Methods). In the predicted local novelty

response (middle row in Figures 3), an early g-band power

increase (>40 Hz) appeared right after the fifth tone. In the

unpredicted local and global novelty responses (top and

bottom rows, respectively), the g-band power increase ap-

peared not only in the early phase, but also extended to a later

phase, where the early and late g-band power increases jointly

lasted more than 300 ms. Other than the g-band power

increases, the unpredicted local novelty response also con-

tained a b-band power decease (10�30 Hz) with a longer la-

tency (top row).

These spectro-temporal patterns (the early g-band increase,

late g-band increase, and late b-band decease) were also

observed in other channels in both subjects (see novelty re-

sponses from all 128 channels in both subjects in Figure S1).

A simple univariate analysis was used to identify the patterns

across all channels (Figure 4A). Most responses were found at

the temporal and frontal sites, and, in subject 1, the orbitofrontal

cortex (OFC) and each spectro-temporal pattern showed distinct

spatial distribution. To see how each response pattern contrib-

uted to different novelty responses, we counted the total number

of channels that contained the response pattern (Figure 4B). In

both subjects, the early g-band increase appeared more in the

unpredicted and predicted local novelty responses than in the

global novelty response, which closely matched the expected

appearance profile of PE1 (Figure 2C). On the other hand, the

late g-band increase and b-band decease were primarily found

in the unpredicted local and global novelty responses, which

matched the expected appearance profile of PE2 in the Partial-

global model (Figure 2C). Moreover, the late g-band increase

and b-band decease could represent opposite hierarchical

signaling in the processing of PE2, since the g and b bands are

thought to subserve bottom-up and top-down communications,

respectively (see Discussion).

In summary, our initial univariate analysis suggested that (1)

the early g-band power increase represented a bottom-up PE1

processing, (2) the late g-band power increase represented

a subsequent bottom-up PE2 processing, (3) the late b-band

power decrease represented a top-down modulation process



Figure 3. Examples of Partially Superim-

posed Local and Global Novelty Responses

Comparisons of TFRs in channel 78 (red circle).

Averaged TFRs in different trial types are

shown (fist two columns), and the significant

differences between them, i.e., novelty re-

sponses, are outlined (third column). The vertical

lines indicate the five stimuli on each trial. The

color represents the relative activation level,

measured in decibel, compared to the baseline

values (�0.2–0 s).
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associated with PE2, and (4) the global regularity was only

partially predicted (Partial-global in Figure 2).

Three Latent Components in Comprehensive Dynamics
of Network Activity Identified by Data-Driven Analysis
To further test the hypotheses suggested by the univariate anal-

ysis, we aimed to acquire a more comprehensive view of the

novelty responses across the large space of channels, time, fre-

quencies, and conditions. This was achieved by using an unbi-

ased decomposition analysis that extracts latent components

in functional network dynamics (Chao et al., 2015) (see STAR

Methods and Figure S2). We first pooled novelty responses

from all channels and all comparisons to create a broadband

library. To organize and visualize this dataset, we created a

tensor with three dimensions: Channel (cortical area), Time-Fre-

quency (in-trial dynamics), and Comparison (novelty response),

for the anatomical, dynamic, and functional aspects of the

data, respectively. The dimensionality of the tensor was 128

(channels) by 10,125 (125 time windows and 81 frequency

bins) by 3 (comparisons). To extract structured information

from the dataset, we factorized the 3D tensor into multiple

components by performing parallel factor analysis (PARAFAC),

a generalization of principal-component analysis (PCA) to

higher-order arrays (Harshman and Lundy, 1994) and measured

the consistency of factorization under different iterations of

PARAFAC (Bro and Kiers, 2003) (see STAR Methods).

Three dominant components were identified from the pooled

activity (Figure S3), where each component contained a unique

fingerprint of network anatomy, dynamics, and function,

described by its composition in the three tensor dimensions (Fig-

ure 5). The three components matched the three response
patterns found in the initial univariate anal-

ysis. For subject 1, component 1 was

associated with the early g-band power

increase. It was activated mainly in early

auditory cortex (particularly the rostral

parabelt area) (Figure 5A, top), immedi-

ately after the fifth tone and in the g

frequency band (>40 Hz) (Figure 5B, top)

(see the temporal and spectral profiles in

Figure S4). Furthermore, it appeared

mostly in the unpredicted and predicted

local novelty responses (Figure 5C, top).

Component 2 was associated with the

late g-band power increase. It was
activated primarily in the anterior temporal cortex (particularly

areasTs1andTs2 in the superior temporal gyrus) andsecondarily

in PFC (particularly the frontopolar area 10) and the OFC

(Figure 5A, middle), slightly after component 1 but also in the g

frequency band (Figure 5B, middle), and appeared mostly in

the unpredicted local and global novelty responses (Figure 5C,

middle). Component 3 was associated with the late b-band

power decease. It was activated primarily in PFC (partic-

ularly the frontopolar area 10) and secondarily in the superior

temporal cortex and OFC (Figure 5A, bottom), slightly after

component 2 and with a decrease in a/b-band power (<30 Hz)

(Figure 5B, bottom), and appeared mostly in the unpre-

dicted local andglobal novelty responses as in component 2 (Fig-

ure 5C, bottom). Remarkably similar components were found in

subject 2, except the strong activations in PFC were found in

the dorsolateral PFC (DLPFC), and OFC was not recorded (Fig-

ures 5D–5F).

The data-driven results supported our hypothesis in all three

dimensions. Anatomically (Figures 5A and 5D), component 1

was located around early auditory cortex, in agreement with

its role in the processing of local prediction error, and compo-

nents 2 and 3 were located in higher-order cortices, in agree-

ment with roles in higher-order sequence-level processing

Dynamically (Figures 5B and 5E), the activation timings and

spectral profiles indicated that a bottom-up process (compo-

nent 1) was activated right after the fifth tone, followed by

another bottom-up process (component 2) and a subsequent

top-down process (component 3). Functionally (Figures 5C

and 5F), the components’ contributions to the novelty re-

sponses were consistent with the Partial-global model (Fig-

ure 2C) and the results from the univariate analysis (Figure 4B),
Neuron 100, 1–15, December 5, 2018 5
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Figure 4. Spatial Distribution of Different Novelty Response Patterns

(A) The channels contained early g-band power increases (red circles), late g-band power increases (blue), and/or late b-band power decreases (green) in novelty

responses (top: the unpredicted local novelty response,middle: the predicted local novelty response; bottom: the global novelty response) are shown for subjects

1 (left) and 2 (right). Gray dots indicate the locations of all 128 channels.

(B) The number of channels shown early g-band power increases (red), late g-band power increases (blue), and/or late b-band power decreases (green) in

different novelty responses are shown for subjects 1 (top) and 2 (bottom). The spectro-temporal patterns of all novelty responses are shown in Figure S1.
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again suggesting that component 1 represented the processing

of PE1, and components 2 and 3 were related to the processing

of PE2.

Component 3 as a Top-Down Process Tested by
Directional Network Connectivity
Our results consistently linked components 1 and 2 to PE1 and

PE2, respectively, while component 3 as a top-down process

was so far a speculation based on its frequency characteristics.

To verify that component 3 indeed indexed a top-down process,

we examined the directionality of corticocortical interactions in

the novelty responses. Corticocortical interactions were quanti-

fied by spectral Granger causality (GC) (see STAR Methods),

which uses the phase differences between signals from two

cortical areas to infer their asymmetric causal dependence (Bro-

velli et al., 2004; Kami�nski et al., 2001). Each GC represents the

in-trial spectro-temporal dynamics of corticocortical interactions

for a given pair of electrodes, during the time from 200ms before

the first tone to 600 ms after the fifth tone (81 time bins), and

across frequencies between 0 and 125 Hz (125 frequency bins).

Similar to the activity analysis on TFRs, we compared GCs

across different trial conditions in order to examine changes in

connectivity induced by novelty stimuli. We then pooled novelty

connectivity responses from all connections and all comparisons

to create a tensor with three dimensions: Channel-Channel
6 Neuron 100, 1–15, December 5, 2018
(cortical connection), Time-Frequency (in-trial dynamics), and

Comparison (novelty response). For each subject, the dimen-

sionality of the tensor was 16,256 (connections) by 10,125

(125 time windows and 81 frequency bins) by 3 (comparisons).

We then factorized the 3D connectivity tensor by performing

PARAFAC, and only one principal component from the pooled

connectivity was identified (Figure S5).

For both subjects, the principal connectivity component

involved connections from PFC to the temporal cortex (Fig-

ure 6A), about 200 ms after the fifth tone and in the a and b

frequency bands (<30 Hz) (Figure 6B), and appeared only in

the unpredicted local and global novelty responses (Figure 6C).

To further visualize the connectivity patterns, we quantified the

causal density and causal outflow of the interactions (Figure 6D).

Causal density is the sum of all outgoing and incoming interac-

tions for each channel, showing areas with busy interactions.

Causal outflow is the net outgoing interactions of each channel,

indicating the source and sink areas of interactions. Busy inter-

actions were found in the connections from DLPFC to early audi-

tory cortex, anterior temporal cortex, and OFC (in subject 1).

The principal connectivity component could represent the

sameprocessascomponent 3, since they sharedsimilar anatom-

ical, dynamic, and functional profiles. Spatially, both involved

PFC, early auditory cortex, anterior temporal cortex, and OFC

(in subject 1); spectrally, both appeared in the lower-frequency



A B C

D E F

Figure 5. Principal Activity Components in Novelty Responses

(A) The anatomical dimension of the three components in subject 1. The size and color of each circle represent the activation level (arbitrary unit) at the

corresponding electrode.

(B) The dynamic dimension of the three components in subject 1.

(C) The functional dimension of the three components in subject 1.

(D–F) The same as (A)–(C), but the results are from subject 2.
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bands (<30 Hz); and, functionally, both were absent from the pre-

dicted local novelty response. Therefore, component 3 could be

indeed associated with top-down information flow triggered by

PE2, compatible with a role in updating predictions and resolving

errors arising in the lower-level auditory cortices.
Coordination among Activity Components Tested by
Within-Trial Functional Correlations
To further verify the postulated roles of the three components,

we examined their coordination by evaluating how their activa-

tions co-varied with each other within individual trials under
Neuron 100, 1–15, December 5, 2018 7
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Figure 6. Principal Connectivity Component

(A) The anatomical dimension of the principal connectivity component in subjects 1 (top) and 2 (bottom). The width and color of each arrow represent the

activation level (arbitrary unit) in the corresponding connection.

(B) The dynamic dimension of the connectivity component.

(C) The functional dimension of the connectivity component.

(D) Causal density and causal outflow of the connectivity component in subject 1 (left) and 2 (right). For causal density, the size and color of each circle represent

the sum of all outgoing and incoming interactions at the corresponding channel. For causal outflow, the size and color of each circle represent the net outgoing

interactions of each channel, where red and blue channels represent source and sink areas of the information flow, respectively.
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different trial conditions. The predictive-coding model predicts

that the activation level of component 1 (PE1) should determine

the activation level of component 2 (PE2), especially on xYjxx
trials where PE2 is directly caused by PE1 (Figure 2A), and on

xYjxY trials where PE2was the residue of PE1 after partial global

prediction P2 (Figure 2B). Furthermore, the activation level of

component 2 should determine the activation level of compo-

nent 3 (the prediction updates induced by PE2), especially on

xYjxx trials where PE2 propagates to the higher level (Figure 2A),

and on xYjxY and xxjxY trials where smaller PE2 is generated due

to partial global prediction P2 (Figure 2B).

To evaluate these hypotheses, we first estimated how much

each multidimensional component contributed to individual

trials. This was achieved by projecting the TFR of each trial

onto the spatio-spectro-temporal pattern (the first two dimen-

sions) of each component (see STAR Methods). As result, how

much each component contributed to the novelty response on

a given trial was represented by a single scalar, i.e., its projection

value. Examples of contributions of the three components during

xxjxx and xYjxx trials are shown in Figure S6. We then evaluated

whether the contribution of one component correlated with the

contribution of another component (full statistics in Table S1).

Significant correlations under all trial conditions in both subjects

are illustrated in Figure 7A.
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The functional correlations strongly supported the proposed

predictive-codingmodel. First, no correlation was found on xxjxx
trials, which is consistent with the model where no prediction

error arises on xxjxx trials. Second, significant correlations

between components 1 and 2 were found on xYjxx and xYjxY tri-

als, which is consistent with themodel where PE2 (component 2)

was causally induced by PE1 (component 1) on xYjxx and xYjxY
trials. Lastly, significant correlations were found between com-

ponents 2 and 3 on xYjxx, xYjxY, and xxjxY trials, which sug-

gested that PE2 always led to a top-down prediction update

(component 3). Furthermore, the correlations were stronger on

xYjxx trials than on xYjxY and xxjxY trials, as predicted by

the model.

Component 3 as Prediction Updates Tested by Across-
Trial Functional Correlations
We demonstrated that component 3 represented a top-down

process that was triggered by the higher-level error PE2. Our

hypothesis is that component 3 represents a prediction update

process that resolved prediction errors at the same hierarchical

level (PE2) and/or at the lower level (PE1). One final predic-

tion is that this model update would affect the processing of

subsequent trials. Specifically, trial-by-trial fluctuations in the

strength of activation of component 3 should affect the amount
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Figure 7. Evaluation of Functional Correlations between Activity Components within and across Trials

(A) Illustration of the functional correlations between the components within a trial in different trial types. Each black line indicates a significant correlation

(p < 0.05), and the corresponding correlation coefficient is labeled and represented by its thickness. The direction of each arrow indicates the temporal order of

the components, not their functional causality. See full statistics in Table S1.

(B) Illustration of the functional correlations between component 3 on the global deviant trials (left: xYjxx: global deviants in xxxxx block; right: xxjxY: global
deviants in xxxxY block) and components 1 and 2 on the following standard trials (post-deviant). Each black line indicates a significant correlation (p < 0.05), and

the corresponding correlation coefficient is labeled and represented by its thickness. The direction of each arrow indicates the temporal order of the components,

not their functional causality. See full statistics in Table S2.

(C) Schematics of the proposed hierarchy of cortical signals coding for PE1 (component 1), PE2 (component 2), and prediction updates (component 3) and their

corresponding cortical areas and frequency channels.
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of changes in top-down predictions and affect prediction-error

signals on subsequent trials. We therefore predicted that the

activation level of component 3, on a global deviant trial, should

determine the activation levels on component 2 (PE2) and/or

component 1 (PE1) on the next trial (which is always a global

standard).

Similar to the previous analysis, each single-trial responsewas

first projected to the three components to capture each compo-

nent’s contribution. We then evaluated whether the contribution

of component 3 on the global deviant trials, in both xxxxx block

(i.e., xYjxx trials) and xxxxY block (i.e., xxjxY trials), was corre-

lated to the contributions of components 1 and 2 on the corre-

sponding post-deviant trials. Examples of each component’s

contribution in xxxxx block are shown in Figure S7.

The correlations were observed as predicted by the hierar-

chical predictive-coding model (full statistics in Table S2).

Particularly, the activation level of component 3 on xYjxx trials

was significantly correlated to the post-deviant activation levels

of components 1 and 2, and the activation level of component 3

on xxjxY trials was significantly correlated to the post-deviant

activation level of component 2 (Figure 7B). These results indi-

cated that when both local and global regularities were violated

(as on xYjxx trials, Figure 2A), component 3 influenced both

PE1 and PE2 on the next trial. On the other hand, when only

global regularity was violated (as on xxjxY trials, Figure 2B),

component 3 influenced only PE2 on the next trial.

Extraction of Partial Global Prediction Signals
The results from our analyses all supported the model of partial

global prediction (Partial-global). To further examine how the
prediction of global regularity was established, we switched

our focus to the first 20 repetitive xxxxY trials in xxxxY blocks.

We hypothesized that the global prediction was absent or

weak in the early trials and gradually established over the repe-

titions. Therefore, neural processes during the early trials should

be similar to xYjxY in No-global, and neural processes during the

later trials should be similar to xYjxY in either Full-global or

Partial-global (Figure 2B).

To extract the global prediction signals, we therefore

compared the TFRs from the first 3 trials (Early, trials 1–3) to

the TFRs from the last 3 trials (Late, trials 18–20). The significant

difference in TFRs between Early and Late trials (Late –Early) was

detected by the same nonparametric cluster-based permutation

test used in Figure 3 (a = 0.05 corrected for multiple compari-

sons). All the identified significant differences are shown in

Figure 8. In subject 1, the significant differences were found

primarily in DLPFC and the frontopolar area 10, secondarily in

the dorsal premotor cortex (PMd) (particularly the premotor

area F2), and also the area Ts2 in the superior temporal gyrus

(Figure 8A, left). In subject 2, the significant differences were

found primarily in DLPFC, and secondarily in PMd (the area F2)

and the ventral premotor cortex (PMv) (the area F5) (Figure 8A,

right). In both subjects, the significant differences were found

in the a/b-band power (<30 Hz) as early as the end of the first

tone (Figure 8B).

Based on the model in Figure 2, if the global prediction was

fully established in Late trials, the significant difference (Late –

Early) should contain not only the higher-level predictions (P2x

and P2Y, present in Late trials), but also the higher-level predic-

tion errors (PE2x and PE2Y, present in Early trials) (compare
Neuron 100, 1–15, December 5, 2018 9
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Figure 8. Emergence of Global Prediction Signals within the First 20 Trials of a Block

(A) Channels with a significant difference in TFRs between Early and Late trials (Late – Early) are shown with large black circles with the channel numbers labeled.

Non-significant channels are indicated by small gray dots.

(B) Time-frequency representations of the identified significant differences. Each panel represents a significant channel shown in (A) (the channel number is

shown). Same format as Figure 3. Axis labels and color bar are shown in the lower-left corner.
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xYjxY in Full-global and No-global). On the other hand, if the

global prediction was only partially established, where the

higher-level prediction errors also appear in Late trials, the signif-

icant difference should primarily reflect the higher-level predic-

tions (compare xYjxY in Partial-global and No-global). Since the

higher-level prediction error should appear in the g band and

no significant g-band responses were observed (Figure 8B),

we concluded that, during the emergence of the rule in the first

20 trials of a block, brain activity was dominated by the establish-

ment of a partial prediction for the global regularity.

We further performed a similar comparison between the first 3

xxxxY trials after the 20 repetitions (around trials 21–23, xxxxx

trials were skipped) and the 3 xxxxY trials after a comparable

20-trial period (around trials 38–40, xxxxx trials were skipped).

Most of the prediction signals identified in the first 20 trials was

not found in the following 20 trials (Figure S8). This indicated

that the identified prediction signals were not an artifact of drift

in neural activity, and the learning of global regularity occurred

primarily during the first 20 repetitions. Furthermore, it is worth

noting that our task only required the subjects to passively listen

to the stimuli and thus provided no behavioral assessment for

this internal learning process.
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DISCUSSION

To evaluate the hierarchical predictive-coding model during the

local-global paradigm,weused adata-driven approach to extract

emergent network components in cortical activity and cortico-

cortical connectivity, which were further tested by hypothesis-

driven analyses. Our findings revealed the presence of three

distinct cortical processing stages for auditory novelty and deter-

mined their functional correlations and hierarchy (summarized in

Figure 7C). Based on our results, we proposed that prediction-

error signals are transmitted in the g frequency band, where the

local-levelprediction-error signal is sent fromearly auditorycortex

to the anterior temporal cortex, and the global-level prediction-

error signal is sent from the anterior temporal cortex to PFC. On

the other hand, the local- and global-level prediction signals are

transmitted in the a/b band, between the same corresponding

areas but in the opposite directions. Furthermore, if a local-level

prediction error is not fully cancelled out by the global-level pre-

diction, then a prediction-update signal is triggered in the a/b

band and broadcasted from PFC back to the anterior temporal

cortex and early auditory cortex, which are the target areas of

the global- and local-level prediction signals, respectively.
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Significance of the Hierarchical Structure
According to the hierarchical predictive-coding framework (Fris-

ton, 2005), higher levels of the cortical hierarchy predict the error

residual from the lower level rather than the sensory data itself.

Another possible model is a predictive but not hierarchical

design, where one top-down process predicts the local regular-

ity, as in the hierarchical model, and the other process directly

predicts the global regularity in the input sequence. According

to this alternative non-hierarchical model, the top-down process

should directly predict the fifth tone x in xxxxx block and the fifth

tone Y in xxxxY block; therefore, the novelty response in xxxxx

block (xYjxx – xxjxx) should be equivalent to the novelty response

in xxxxY block (xxjxY – xYjxY). However, this is disproved by our

results, which showed that xYjxx – xxjxx (the unpredicted local

novelty response) and xxjxY – xYjxY (the negative of the pre-

dicted local novelty response) contained different components

and were always different. The key advantage of having hierar-

chies in a bidirectional structure is to allow information related

to regularities at different spatial and temporal scales to merge

into a coherent unity, because each hypothesis about the hidden

causes of sensory inputs is called upon only if the sensory data

cannot be explained at a lower level; such a hierarchical organi-

zation may therefore result in an internally consistent model of

the causal structure of the sensory world (Clark, 2013; Fris-

ton, 2010).

Dissecting Complex Multi-Dimensional Brain
Responses
Neurophysiological responses can be dissected into at least

four dimensions: anatomical site, temporal dynamics, fre-

quency selectivity, and stimulus responsivity. Here, we show

how a comprehensive description of such complex brain re-

sponses, indexing neural processes that are multi-dimensional,

simultaneous, and interdependent, can be achieved by using

the PARAFAC method of tensor decomposition. PARAFAC is

one of several methods to decompose a multi-dimensional

data into a set of latent components that can describe the

data in a more condensed form. Other commonly used

methods are the Tucker3 method (Kroonenberg, 1983) and sim-

ply unfolding of the multi-dimensional data to a 2D matrix and

then performing standard two-way methods such as PCA.

Among these methods, PARAFAC uses fewer degrees of

freedom to model the data (Kiers, 1991) and does not require

matrix unfolding, which will mix up the variables and destroy

their interactions (Harshman and Lundy, 1994). Those features

make PARAFAC simpler, more robust, and ideal to extract

latent patterns in the data for easier interpretation. PARAFAC

has proved to be a powerful analytical tool for electroencepha-

lography (EEG) (Miwakeichi et al., 2004; Mørup et al., 2006),

ECoG (Chao et al., 2015; Yanagawa et al., 2013), and fMRI

(Beckmann and Smith, 2005) and is well suited to dissect brain

responses that consist of multiple superimposed network

dynamics (Chao et al., 2015, 2018).

Brain Areas Associated with Local and Global Novelty
Our result shows that lower- and higher-order auditory predic-

tion errors are represented in the temporal and frontal cortices,

respectively. This is consistent with previous evidence from
bothmonkey and human studies using the local-global paradigm

or its variations. Human studies with ECoG, EEG,MEG, and fMRI

show that local error signals are confined to the primary auditory

cortex, while global error signals propagate to distributed areas

in the frontal cortex (Bekinschtein et al., 2009; Chennu et al.,

2013; El Karoui et al., 2014; Wacongne et al., 2011). Similar re-

sults have been found in monkeys, where fMRI responses to

local and global violations are identified in the auditory cortex

and a distributed frontoparietal network, respectively (Uhrig

et al., 2014). In the framework of predictive coding, temporal cor-

tex has been suggested to be involved in the learning and storing

of transition probabilities, which suffice to detect local deviants

(Wacongne et al., 2011). Frontal cortex, on the other hand, was

found to encode more global and abstract properties of the

entire sequence, including numerical patterns (‘‘there should

be 5 items’’) and sequential patterns (‘‘the last item should be

different’’) in both monkeys and humans (Wang et al., 2015),

compatible with its present activation to global deviants.

In our study, the higher-order error and update signals were

found primarily in the frontopolar PFC (area 10) and DLPFC.

Among prefrontal areas in macaque monkeys, the frontopolar

area 10 has the densest interconnection with auditory associa-

tion areas: it receives information from nearly all levels of auditory

processing in the superior temporal gyrus, from the early sensory

processing in the belt and parabelt areas to the higher-order pro-

cessing of conspecific communication in the temporal polar

areas (Medalla and Barbas, 2014; Romanski and Averbeck,

2009) and is also themain source of connections back to auditory

cortices (Barbas et al., 2005). Functionally, both the frontopolar

area 10 and DLPFC are important for working memory (Curtis

and D’Esposito, 2003; Gilbert et al., 2006). The present results

suggest that those brain structures generate and hold an internal

representation of the entire sequence of stimuli, sufficient to

generate error signals when an unexpected sequence is heard.

The ventrolateral PFC (VLPFC) is another key area for process-

ing auditory sequences, particularly those with higher

complexity (Wilson et al., 2017). Previous studies with the

local-global paradigm have shown that global novelty responses

can be found in VLPFC in both monkeys and humans (Uhrig

et al., 2014; Wang et al., 2015). In agreement with those findings,

our univariate analysis identified several electrodes in VLPFC

in subject 1 that showed late g-band power increases and

b-band power decreases in the global novelty response (Fig-

ure 4A), although the responses were smaller than those in the

frontopolar area 10 and DLPFC (Figure 5A). In subject 2, unfortu-

nately, the role of VLPFC could not be evaluated since electrode

placement failed to cover the area (Figure 1B). In contrast to the

frontopolar cortex and DLPFC, which showed signals associ-

ated with both the global prediction (Figure 8) and its updates,

VLPFC was only found involved in the update process. This sug-

gested a distinctive modulatory role of VLPFC in auditory

sequence encoding and storage. Further research, using record-

ings specifically focused on this region and using a greater

variety of auditory sequences will be needed to evaluate the hy-

pothesis that inferior frontal cortex acts as a conserved

sequence processor in humans and monkeys (Wilson et al.,

2017), and the possibility that its representational scheme has

expanded in human evolution (Dehaene et al., 2015).
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Brain Signals and Areas Associated with Global
Prediction
Analysis of the evolution of brain signals during the first 20 trials in

a block showed how the partial global prediction signals built up

during the repetitions of xxxxY. Using this approach, we found

that global prediction signals appeared as early as the end of

the first tone in the sequence (Figure 8B). This result suggests

that global prediction is not based on a static pattern of neural

activity that would be maintained throughout the xxxxY block,

but on a dynamic, trial-specific signal. Global prediction signals

could have been launched by an attention engagement triggered

by the fixation onset, which occurred 200–300ms before the first

tone (seeSTARMethodsandFigure 1A). Alternatively, global pre-

diction signals couldhavebeendirectly triggeredby the first tone,

suggesting the existence of another bottom-up pathway that

launched the global prediction from the onset of a sensory

sequence.

Global prediction signals were found primarily in PFC and the

premotor cortex (Figure 8A). Among those areas, DLPFC and

the frontopolar area 10 were also involved in the processing of

higher-order errors and prediction updates (Figures 5A and 6B).

This finding suggests thatPFCwas thecore structuremaintaining

an internal representation of theentire xxxxYsequenceandcould

receive global-level prediction-error signals from the lower hier-

archy and send prediction-update signals to the lower hierar-

chies when the global deviant occurred (xxxxx). On the other

hand, the premotor cortex was found to be activated in humans

during the monitoring of auditory violations in a serial prediction

task (Schubotz et al., 2003), predicting musical rhythms (Chen

et al., 2008; Chen et al., 2006; Zatorre et al., 2007), and speech

perception (Meister et al., 2007; Pulverm€uller and Fadiga,

2010). The identified involvement of the premotor cortex sup-

ports the view that sound and action are often intrinsically linked

(the sounds we hear reflect actions, and the sounds we make

result from actions), and thatmotor signals are therefore involved

in the prediction of sensory events (Lima et al., 2016;Morillon and

Baillet, 2017; Schubotz, 2007).

Gamma and Alpha/Beta Oscillations in Predictive
Coding
Neural oscillations are thought to be a means for neuronal pop-

ulations to communicate within and between cortical areas,

where different frequency channels are associated with

different types of neural computations (Fries, 2005). This notion

is supported by recent studies of the human and primate cor-

tex, which have shown that feedforward and feedback hierar-

chical communication between cortical areas are exerted

through by g- and a/b-band oscillations, respectively, in both

vision (Bastos et al., 2015b; Michalareas et al., 2016; van Ker-

koerle et al., 2014) and audition (D€urschmid et al., 2016; Fonto-

lan et al., 2014; Sedley et al., 2016). In the present study, we

examined this view in the context of predictive coding and

demonstrated that ascending information about prediction er-

rors and descending information about predictions and predic-

tion updates were indeed processed in the g and a/b frequency

bands, respectively. This finding suggests the significance of

directional frequency-specific multiplexing in cortical informa-

tion processing.
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Numerous human ECoG andMEG studies have demonstrated

the correlation between prediction errors and the magnitude of

g-band oscillations in audition (D€urschmid et al., 2016; Edwards

et al., 2005; Todorovic et al., 2011), vision (Brodski et al., 2015),

and audiovisual interactions (Arnal et al., 2011). To further

examine the hierarchical structure in prediction errors, a human

ECoG study with the local-global paradigm shows that local nov-

elty evokes early high-g responses (60�120 Hz) in the temporal

cortex, whereas global novelty induces a sustained decrease in

the b-band power (13–25 Hz) within the frontal lobe (El Karoui

et al., 2014).With the same paradigm, we obtained similar results

inmonkeys. However, we found that prediction errors at the local

and global levels are both represented in the g oscillations, but

with slightly different frequency profiles (Figure S4). This ‘‘fre-

quency ordering’’ suggests that bottom-up error signals could

be carried by slightly different frequency channels depending

on their level in the hierarchy. Furthermore, we found that the

b-power decrease in the global novelty response is not associ-

ated with prediction errors, but with a top-down prediction

update.

Although their role in top-down versus bottom-up signaling is

well established (Bastos et al., 2015b; Michalareas et al., 2016),

evidence linking a/b-band responses to prediction signals is

limited (Arnal and Giraud, 2012). A recent human ECoG study,

using a semi-predictable sequence of sounds to force the sub-

jects to continuously update their predictions, provided the first

direct evidence that b-band oscillations are involved in updating

the content of sensory predictions (Sedley et al., 2016). Our

results concur and further show that prediction updates are

linked to a b-power decrease, which suggests that b-band oscil-

lations are associated with the maintenance of predictions, and

thus need to be removed or reduced when updates are required.

Limitations and Further Tests of the Theory
Here, we propose several future directions that could help further

verify the predictive-coding theory, particularly at the meso-

scopic level. One limitation of the present experiment is that it

could not fully isolate the prediction signals, since predictions

and prediction errors were always intertwined. Global prediction

signals could only be identified by their change during the first 20

trials of a block. In the future, amore direct approach would be to

systematically manipulate the local and global prediction

strengths (see discussion below). Another useful strategy would

be to probe the network response with omission trials (e.g.,

4-tone sequence xxxx) (Wacongne et al., 2011), which could pro-

vide crucial information about the spontaneous timing of the pre-

diction signals when no external stimuli are presented and allow

us to examine the possible difference between an omitted error

(e.g., PE1x) and an unpredicted error (e.g., PE1Y).

Another limitation is that our analysis only explored the func-

tional correlation between prediction-error and prediction-

update signals and thus cannot fully evaluate the causal links

between the underlying processes. One analytical approach to

further probe the relations between prediction and prediction-er-

ror signals across hierarchieswould be tomodel the datawith dy-

namic causal modeling (DCM) (Friston et al., 2003). DCM is a

method designed to make and estimate inferences about the

coupling among brain areas, which has been implemented to
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reveal possible canonical circuits in the context of predictive cod-

ing (Auksztulewicz and Friston, 2015; Bastos et al., 2015a; Brown

and Friston, 2012). A more direct experimental approach would

be to systematically controls local- and global-level prediction

strengths by independently manipulating sequence length and

sequence frequency. Furthermore, prediction strengths could

be altered in a seamless manner using probabilistic rather than

deterministic rules (Sedley et al., 2016). This would allow to

examine how predictions and prediction errors are dynamically

coupled, and to monitor how predictions at different hierarchies

are established and altered by the sensory inputs.

Finally, to probe the proposed hierarchical cortical organiza-

tion, additional experiments could vary the complexity of the reg-

ularities at larger temporal scales, using as a guideline the

recently proposed hierarchy of sequence knowledge (Dehaene

et al., 2015). More complex rules could, however, become signif-

icantly more difficult to detect. Other alternatives are using

speech stimuli that introduce multi-level syntactic structures, vi-

sual stimuli in which hierarchical features can be more easily

defined according to both their sequential and spatial configura-

tions, or multi-modal audiovisual stimuli. Last but not least, in

future work, the information content carried by the prediction

signals should be assessed, for instance, by taking advantage

of electrophysiological or optical methods for multiple single-

unit recordings. To further understand predictive coding in the

brain, it will be essential to decode the neural representations

of predictions across hierarchies, which collectively could reveal

how the brain encodes its internal models of the world.

In summary, our findings support the hierarchical predictive-

coding theory by providing a high-resolution dynamic descrip-

tion of how prediction and prediction-error signals at different

hierarchies interact with each other over distinct cortical areas

and frequency bands. The combination of large-scale neuronal

recordings with data-driven and hypothesis-driven analyses al-

lows a systematic exploration of mesoscopic cortical dynamics,

which provides potential target brain areas and communication

channels for future mechanistic study of predictive coding,

particularly, the study on how prediction and prediction-error

signals are created at the cellular level and how they causally

interact in microcircuits.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB Mathworks https://www.mathworks.com

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997)

EEGLAB Toolbox (Delorme et al., 2011) https://sccn.ucsd.edu/eeglab/index.php

FieldTrip Toolbox (Oostenveld et al., 2011) http://www.fieldtriptoolbox.org/

Source Information Flow Toolbox (SIFT) (Delorme et al., 2011) https://sccn.ucsd.edu/wiki/SIFT

N-way Toolbox (Andersson and Bro, 2000) http://www.models.life.ku.dk/nwaytoolbox
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests should be directed to and will be fulfilled by the Lead Contact Dr. Zenas C. Chao (zenas.c.chao@

gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects and experimental setup
Two macaque monkeys, identified as Subjects 1 (male, 8.8 kg) and 2 (male, 7.5 kg), were used in the experiments after brain MRIs

were acquired. Before the monkeys were implanted with subdural ECoG electrodes, they were familiarized with the experimental

environment. The monkeys were seated in a primate chair in a dark, electrically shielded and sound-attenuated chamber with their

head fixed in a position with a custom-made helmet. A custom-made eye-tracking system was used for monitoring the monkey’s

right eye with a 30 Hz sampling rate (Nagasaka et al., 2011). Cerebus data acquisition systems (Blackrock Microsystems, USA)

were used to record ECoG signals with a sampling rate of 1 kHz. An iMac personal computer (Apple, USA) was used to present

the fixation point on a 24-in LCD monitor located 60 cm away from the subject, and the same PC was used to record monkey’s

gaze and neural signals via USB-1208LS data acquisition device (Measurement Computing Co., USA). For auditory stimuli, we posi-

tioned a pair of audio speakers (Fostex, Japan) on the right and left sides, at a distance of�80 cm from the head. We used MATLAB

(Mathworks, Natick, MA, USA) and Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) to present auditory stimuli.

Electrode implant
Subdural electrodes were surgically implanted. Themonkeys were anesthetized by administration of atropine (0.05mg/kg, intramus-

cular), ketamine (5mg/kg, intramuscular) and pentobarbital (20mg/kg, intravenous). Throughout surgery wemonitored the heart rate,

blood pressure, body temperature, SpO2 (peripheral capillary oxygen saturation), and reflex response to noxious stimulation, adjust-

ing the dose of pentobarbital accordingly. In the subdural space we chronically implanted customized 128-channel ECoG electrode

arrays (Unique Medical, Japan) containing 2.1 mm diameter platinum electrodes (1 mm diameter exposed from a silicone sheet) with

an inter-electrode distances of 5 mm). In Subject 1, electrodes were placed to cover most of the lateral surface of the right hemi-

sphere, also under the orbitofrontal lobe. In Subject 2, all electrodes were placed on the lateral surface of the right hemisphere,

and no orbitofrontal part was covered. In both subjects, a reference electrode was implanted in the subdural space and a ground

electrode was implanted in the epidural space above the right hemisphere (the reference and ground electrodes were 5-mm 3

10-mm rectangular platinum plates). Electrical cables leading from the ECoG electrodes were connected to Omnetics connectors

(Unique Medical) affixed to the skull with an adaptor and titanium screws. To localize the electrodes, we acquired post-operative

X-ray images and co-registered them with the MRIs. We manually identified the location of each electrode by projecting the elec-

trodes in the X-ray images onto the cortical surface reconstructed from the MRIs.

All experimental and surgical procedures were performed in accordance with the experimental protocols (No. H24-2-203(4))

approved by the RIKEN ethics committee and the recommendations of the Weatherall report, ‘The use of non-human primates in

research’. Implantation surgery was performed under sodium pentobarbital anesthesia, and all efforts were made to minimize

suffering. No animal was sacrificed in this study. Overall care was managed by the Division of Research Resource Center at RIKEN

Brain Science Institute. The animal was housed in a large individual enclosure with other animals visible in the room, and maintained

on a 12:12-hr light:dark cycle. The animal was given food (PS-A; Oriental Yeast Co., Ltd., Tokyo, Japan) andwater ad libitum, and also
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daily fruit/dry treats as a means of enrichment and novelty. The animal was occasionally provided toys in the cage. The in-house vet-

erinary doctor checked the animal and updated daily feedings in order to maintain weight. We have attempted to offer as humane

treatment of our subject as possible.

Stimulus design and experimental protocol
Two toneswith different pitches (Tone A = 500Hz; Tone B = 1280Hz) were synthesized. Each tonewas 50ms in duration with 7ms rise

and fall times (average intensity 65 dB SPL). Series of five tones were presented with a 150 ms inter-tone interval, with 200�300 ms

between the fixation onset and the first tone onset andmore than 600ms between the last tone onset and the fixation offset. Thus, the

subject was required to maintain fixation 1.6�1.7 s for each trial.

Four different stimulus blocks were used: AAAAA, BBBBB, AAAAB, and BBBBA blocks. In AAAAA blocks, 20 AAAAA sequences

were delivered, followed by a randommixture of 80 AAAAA and 20 AAAAB. In BBBBB blocks, 20 BBBBB sequences were delivered,

followed by a random mixture of 80 BBBBB and 20 BBBBA. In AAAAB blocks, 20 AAAAB sequences were delivered, followed by a

randommixture of 80 AAAAB and 20 AAAAA. In BBBBA blocks, 20 BBBBA sequences were delivered, followed by a randommixture

of 80 BBBBA and 20 BBBBB. In average, each block took�6.5 min to finish, and one session of experiment consisted of four blocks

delivered in a randomized order (�30 min). Two sessions of experiments were performed on each experimental day, with rewards

and break given in between. Experimental data were obtained over 4 experiments for both subjects (4 experiments in 13 days for

Subject 1, an in 7 days for Subject 2). In total, we recorded ECoG signals for 8 sessions in each monkey.

Data analysis
Preprocessing

For each trial, the ECoG signals were aligned at the onset of the first tone, and signals from 0.5 s before to 1.7 s after the onset

of the first tone (�0.5�1.7 s) were segmented and used for the further analyses. The signals were then downsampled 4 times,

resulted in a sampling rate of 250Hz. Trials with abnormal spectra were rejected by using an automated algorithm (MATLAB function:

pop_rejspec.m) from the EEGLAB library (Delorme et al., 2011), which has been suggested as the most effective method for artifact

rejection (Delorme et al., 2007). After removing the artifactual trials, the 50Hz line noise was removed from the data. The data was

further re-referenced using a common average reference (CAR) montage, detrended to remove the linear drift tin the data, and

demeaned to remove the temporal mean. The re-referencing, CAR, detrend, and demean were done using the MATLAB FieldTrip

toolbox (ft_preprocessing.m) (Oostenveld et al., 2010).

Activity analysis

Wavelet transformation: Time–frequency representation (TFR) of the ECoG signals for each electrode was generated by Morlet

wavelet transformation at 110 different center frequencies (10�120Hz) with the half-length of the Morlet analyzing wavelet set at

the coarsest scale of 5 samples, which is implemented in FieldTrip Toolbox (ft_freqanalysis.m). To further quantify induced

responses, the novelty responses phase-locked to the stimuli (‘‘evoked’’ responses) were removed by averaging ECoG signals in

each trial type, and subtracting the TFRs of these phase-locked evoked responses from the TFRs of the overall responses

(Tallon-Baudry and Bertrand, 1999). Evoked responses were removed from the further analysis.

Comparisons of activity

To evaluate the significant differences in TFRs in each comparison, we performed permutations by shuffling trial indices, and used a

nonparametric cluster-based method for multiple comparisons correction (Maris and Oostenveld, 2007), which is implemented in

FieldTrip Toolbox (ft_freqstatistics.m). For each permutation, independent sample t tests were performed at each time and frequency

sample, and samples with a p value smaller than 0.05 were clustered in if they were next to each other in the time-frequency space.

The cluster-level statistic was calculated as the sum of the t-statistics within each cluster, and the maximum of the cluster-level

statistics is taken as the test statistic for the permutation. A histogram of test statistics was constructed from 500 permutations,

and the cluster-corrected threshold for significance was determined as the test-statistic where the proportion of permutations

with greater test statistics (the Monte Carlo significance probability) was 0.05. The cluster-level statistic was also calculated from

the original unshuffled data, and clusters with a cluster-level statistic greater than the threshold were identified as significant.

Connectivity analysis

Three preparation steps were performed for the spectral GC calculation: (1). Preprocessing: detrending, temporal normalization, and

ensemble normalization were performed to achieve local stationarity of the data (Ding et al., 2000), andwere implemented in FieldTrip

toolbox (ft_preprocessing.m). Detrending, which is the subtraction of the best-fitting line from each time series, removes the linear

drift in the data. Temporal normalization, which is the subtraction of the mean of each time series and division by the standard de-

viation, ensures that all variables have equal weights across the trial. These processes were performed on each trial for each channel.

Ensemble normalization, which is the pointwise subtraction of the ensemble mean and division by the ensemble standard deviation,

dramatically improves the local stationarity of the data (Bressler and Seth, 2011; Ding et al., 2000). (2).Window length selection: the

length and the step size of the sliding-window for segmentation were set as 250 ms and 50 ms, respectively. (3).Model order selec-

tion: the model order, which is related to the length of the signal in the past that is relevant to the current observation, was determined

by the Akaike information criterion (AIC) (Akaike, 1974) using the Source Information Flow Toolbox (SIFT) (pop_est_selModelOrder.m)

(Delorme et al., 2011). In both subjects, a model order of 10 samples (equivalent to 103 4 = 40 ms of history) resulted in minimal AIC

and was selected. The selectedmodel order also passed the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, thusmaintaining local
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stationarity (pop_est_validateMVAR.m). Furthermore, the vector autoregression (VAR)model was validated by thewhiteness test and

the consistency test (est_checkMVARWhiteness.m and est_checkMVARConsistency.m, respectively).

Comparisons of connectivity

Similar to the method used for activity comparison, we performed 500 permutations and used a nonparametric cluster-based

method to determine the significant differences in spectral GC in each comparison. For each permutation, the shuffled data were

preprocessed and spectral GC was measured, and the test statistic (the maximum of the cluster-level summed t-statistics) was

calculated. The cluster-level statistic was also calculated from the original unshuffled data, and clusters with a cluster-level statistic

greater than the threshold (Monte Carlo significance probability of 0.05) were identified as significant.

Parallel factor analysis (PARAFAC)

PARAFAC was performed by using the N-way toolbox (parafac.m) (Andersson and Bro, 2000), with the non-negativity constraint on

the Anatomy dimension, and no constraints on other two dimensions. The convergence criterion, i.e., the relative change in fit for

which the algorithm stops, was set to be 1e-6. The initialization method was set to be DTLD (direct trilinear decomposition), which

was considered the most accurate method (Cichocki et al., 2009). To determine the number of structures hidden in the dataset, we

performed the core consistency diagnostic (CORCONDIA) to identify the appropriate latent structures where adding other latent

structures does not considerably improve the model fit (Bro and Kiers, 2003).
e3 Neuron 100, 1–15.e1–e3, December 5, 2018
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